Re: SEMS DTMF

Subject: Re: SEMS DTMF

From: Stefan Sayer <stefan.sayer @googlemail.com>
Date: Tue, 24 Aug 2010 01:54:37 +0200

To: "David J." <david @styleflare.com>

CC: sems mailing list <sems @lists.iptel.org>

Hi,
ok, time to continue here a little bit.

Stefan Sayer wrote:
Hi,

it's raining, so seems like its good time for a second part of this small DSM tutorial.

Stefan Sayer wrote:
David J. wrote:
Hi Stefan,

I am trying to accomplish a script that parallel forks to many callers and then the one who enters the right DTMF
code gets the call.

In order to do this, I am guessing, I need b2b mode which sends RINGING back to the Caller, does the forking plays a
WAV/MP3 announcement to the Callee's and some sort of DTMF detection that captures the dialed digits and verify's
them via script, database or whatever.

actually, in order to be able to prompt the callees and collect the DTMF from them, you will have to establish separate
calls to them - so that b2b mode is not reall{ suitable. Once the right callee leg is identified, though, you can
connect audio from the caller and the callee leg by joining the same conference room. You can interact between the two
legs (e.g. when one hangs up) by sending events back and forth, the only thing you need is to know in both legs is the
id of the other leg (local-tag).

But, to start from the beginning. We will need two DSM scripts, one for the caller, one for the callee leg. We call
that application quizconnect, and we tell dsm to load DSM application configurations by setting in dsm.conf:

conf_dir=/usr/local/etc/sems/dsm/

Then we can create /usr/local/etc/sems/dsm/quizconnect.conf which loads the scripts and sets the settings for the
quizconnect application:
/usr/local/etc/sems/dsm/quizconnect.conf:

diag path=/usr/local/lib/sems/dsm/quizconnect/

load diags=quizconnect caller,quizconnect callee
register apps=quizconnect caller,quizconnect callee
mod_path=/usr/local/lib/sems/dsm/

preload mods=mod_mysql

run_invite event=yes

set param variables=yes

#run_system dsms=

some configuration parameters
- can be used with e.g. $config.prompt_path
prompt_path=/usr/local/lib/sems/dsm/quizconnect/prompts/

We have preloaded the mysql module, which needs this to be initialized and read its configuration (which contains the
DB connection, for example). We also set run_invite event=yes in the dsm config, that way we get an 'invite' event into
the DSM scripts. Now we create two scripts, /usr/local/lib/sems/dsm/quizconnect/quizconnect caller.dsm and
/usr/local/lib/sems/dsm/quizconnect/quizconnect callee.dsm .

When that invite event comes, we tell dsm to not connect the session (i.e. reply with 200 and connect audio), but to
reply 183 (early media) and play a file:

/usr/local/lib/sems/dsm/quizconnect/quizconnect caller.dsm:
import(mod dlg);

initial state START;

transition "got INVITE in caller leg" START - invite -> RUN_INVITE;

apparently no-one tried this, because here we obviously have a c&p typo:

- > initial state RUN INVITE enter {
+ > state RUN INVITE enter {

we should only have one initial state ('START').

log(2, "got invite!");

set($connect session=0);

-- reply with 183 and parse SDP

dlg.acceptInvite(183, Session Progress);

-- set input and output of the session (we have $connect session=0)
setInQutPlaylist();

-- play some welcome message

sets($prompt name=$(config.prompt path)/welcome caller.wav)
playFile($prompt name);

To run this, in sems.conf set application=quizconnect caller .

so, that's the first part. in the next part, we will see how we can read callee numbers from mysql DB, create some
callee legs, and interact between caller and callee legs.

now, first we want to handle the error that the file does not exist or can not be opened. For this, we create a special

1 of 8 08/24/2010 02:09 AM

Re: SEMS DTMF

transition, an "exception transition". Once an exception is thrown (by some internal function or a module function), the
current sequence of statements is interrupted, and only exception transitions are executed; all other transitions are
ignored.

quizconnect caller.dsm:

transition "error opening file" RUN_INVITE - exception / {
dlg.reply (500, Server Internal Error);
stop(false);

} -> END;

state END;

using 'stop', we stop execution of this session. stop() or stop(true) sends a BYE, which we don't want here, and
stop(false) just ends the session after the current event is processed.

Now, a little improvement in the development environment is helpful: when we update the DSM script, we don't want to have
to restart SEMS every time. So, what we do is we load the xmlrpc2di module

sems.conf:

load plugins=wav;session timer;uac_auth;dsm;monitoring;xmlrpc2di

and we tell xmlrpc2di to export the functions from dsm module directly

xmlrpc2di.conf:

export_di=yes
direct_export=dsm;monitoring

then we can in another shell write that few python lines to reload the quizconnect config:
thon
PytKon 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
C 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from xmlrpclib import *
>>> s = ServerProxy('http://localhost:8090"')
>>> s.calls()
0
>>> s,loadConfig('/usr/local/etc/sems/dsm/quizconnect.conf', 'quizconnect')
[200, 'OK']

this way we can replace existing applications (the new set of scripts are executed for new calls only), and also load
other new applications into the running server.

So, every time we change the DSM scripts, we can simply run s.loadConfig(...).

The next task should be to get the list of possible destinations (callees) from the database; we will use a mysql DB. For
this, we create a table in mysql

CREATE TABLE callees (
id int(10) unsigned NOT NULL auto_increment,
caller varchar(128) NOT NULL,
callee varchar(128) NOT NULL,
pin varchar(32) NOT NULL,
\ PRIMARY KEY (id)
and insert some rows:
insert into callees (caller,callee,pin) values ("35","john",6"12345");
insert into callees (caller,callee,pin) values ("35","anna","54321");

so, if tgg number '35' will be called, john and anna will be connected, and john should enter 12345, while anna should
enter 54321.

In the script we use the mod mysql module:

quizconnect caller.dsm:

import(mod_mysql);

we can set the DB connection in our quizconnect.conf (or pass it to mysql.connect() action):

quizconnect.conf:

db_url=mysql://user:pwd@localhost/quizconnect

btw, as we have seen above with prompt path, all configuration keys from our quizconnect.conf are accessible with
$config.key, so we could also write mysql.connect($config.db url).

With the beginning of processing the call, we connect to the database.

state RUN INVITE enter {
log(2, ™got invite!");
set($connect _session=0);
myslq.connect();
-- reply with 183 and parse SDP
dlg.acceptInvite(183, Session Progress);

mysql.connect doesn't throw an exception if the connection fails ('Access denied', 'server has gone away'), instead it
sets an error code ($errno) which is the old style of reporting errors. To throw an exception in that case, we can use
throwOnError() and also handle that exception:

state RUN INVITE enter {
log(2, ™got invite!");

2 0of 8 08/24/2010 02:09 AM

Re: SEMS DTMF

set($connect session=0);
mysql.connect();
throwOnError()
-- reply with 183 and parse SDP
dlg.acceptInvite(183, Session Progress);
-- set 1n€ut and output of the session (we have $connect session=0)
setInOutPlaylist();
-- play some welcome message
sets($prompt name=$(config.prompt path)/welcome caller.wav)
) playFile($prompt_name);

transition "error opening file" RUN_INVITE - exception; test(#type==file) / {
log(0, "error opening file!");
dlg.reply (500, Server Internal Error);
stop(false);

} -> END;

transition "DB error" RUN INVITE - exception; test(#type==connection) / {
log (0, "error connecting to DB!");
logParams(G)
dlg. reply(500, Server Internal Error);
stop(false);
} -> END;

When an exception is processed, the parameters (#paramname) are those of the exception - thus if we do logParams(0), we
can see the actual error from DB in the log.

Now we can select the callees from the database:

set($query key=@user);
mysql.query(select callee, pin from callees where caller=$query key);

which should give us $errno and $db.rows.

We will now apply a small trick: We want to process the results of the DB query, and make some transitions depending on
whether that worked or not. By doing a "repost()", the current event is evaluated once more. so we can do:

' set($query key=@user) ;
mysql. ?§ery(select callee, pin from callees where caller=$query key);
repost

’

transition "query failed" RUN_INVITE - test($errno!="") / {
log(l, "query failed!");
logParams(0);
dlg.reply (500, Server Internal Error);
stop(false);
} -> END;

tran51t10n "no results" RUN_INVITE - test($db.rows==0) / {
log(3, "no results");
dlg reply(404 Not found);
stop(false);

} -> END;

to handle query error and empty destination set. If we have some results, we go to a new state CREATE CALLEE LEGS:

transition "we have results" RUN INVITE - test($db.rows!=0) / set($callee counter=0) -> CREATE CALLEE LEGS;

We will actually loop a few times into that state, for every row that we get from the database - thus we do repost() every
time we enter the state, to make sure we don't stay there (its a 'transitional state'):

state CREATE_CALLEE LEGS
enter {
repost();

transition "create one more" CREATE CALLEE LEGS - test($callee counter<$db.rows) / {
-- this will fill $callee, $pin from current row
mysql.getResult($callee_counter),

set(b leg caller=quizconnect);
set(b leg callee=$callee);

set(b leg domain=sip.domain.net);
set(b_leg app=quizconnect callee);

-- pass $pin to other leg
set(b leg var.pin=$pin);

dlg.dialout(b leg);

-- if that worked, we have the ID of the other leg in $b_leg ltag
log(3, $b leg ltag);

First, here a maybe not so obvious fix (but one gets it by reading the ERROR logs carefully):

if we are_looping several times through this, $b leg ltag is_still set, so dlg.dialout will try to create another call with
ﬁhe same local tag, which fails (error message is something like it can not be added to session container). so we need to add
ere:

-- reset for new call

clear($b_leg ltag);

3 0of 8 08/24/2010 02:09 AM

Re: SEMS DTMF

inc(callee counter);
} -> CREATE CALLEE_LEGS;

We use the dlg.dialout function to create an entirely new call, which will execute the quizconnect callee apglication, and
will be from quizconnect to callee@sip.domain.net. We also pass the pin to the other leg, this variable can be accessed as
$pin in the other script.

When all c?%lee legs are created, we go to a new state. Here we also handle the BYE in the caller leg, at least we stop
our own call:

transition "done creating callee legs" CREATE_CALLEE_LEGS - test($callee counter==$db.rows) -> WAIT CALLEE;
state WAIT CALLEE;
transition "BYE received" WAIT_CALLEE - hangup / stop -> END;

So, that's for the second part of that tutorial. In the third part, we are hopefully finally going to see how to interact
between the call legs, and how to connect the legs into the same conference. Some hints:

- postEvent() can post events with variables between DSM call legs

- mod_conference is used to join audio of two calls to a conference

But now, if we look at in which state where the caller session actually is, we will see that after all that it actually is in
the START state. Strange, why does this happen? The reason is that there's one event run for processing the INVITE message,
the 'invite' event, and then, for the sessionStart event (which is executed because we do dlg.acceptInvite()) the DSM starts
again at the initial state. So we need to add another transition to go to the right place:

transition "got session start in caller leg" START - sessionStart -> WAIT CALLEE;

If we tr{ canceling the call, we see that there's another bugfix needed: "stop(true)" does not work here, because we have not
yet really accepted the call (so bye() won't work) - to the CANCEL we should reply "487 Request Terminated":

transition "CANCEL received" WAIT CALLEE - hangup / {
dlg.reply (487, Request Terminated);
stop(false),

} -> END;

But, when the caller hangs up, we need to tell the callee legs to tear down. So, first we need to save the ltags of the callee
legs, (using some variable names trickery) into $b_ltags[0] .. $b_ltags[n]:

-- if that worked, we have the ID of the other leg in $b_leg ltag
log(3, $b leg ltag);

-- save it
sets($var7name=b71ta%s[$ (callee counter)]);
setVar($var_name=$b leg ltag);

-- reset for new call
clear($b _leg ltag);

Inl{he case that the A leg is canceled, we send an event to the B legs, looping the same way as we did with creating the
calls:

state WAIT_CALLEE;

transition "CANCEL received" WAIT CALLEE - hangup / {
dlg.reply (487, Request Terminated);
set($ca11ee7counter 0);

} -> CANCEL_CALLEES;

state CANCEL CALLEES
enter {
repost();

’

transition "one more to cancel" CANCEL CALLEES - test($callee counter<$db.rows) / {
sets($var _name=b ltags[$(callee counter)]);
var(cancel ltag=$var name);
set(a status=CANCEL);
postEvent($cancel ltag, a status);
inc(callee counter);
} -> CANCEL_CALLEES;

transition "canceled all" CANCEL_CALLEES - test($callee counter==$db.rows) / stop(false) -> END;

Now it's time to create the script for the callee legs. For the beginning, this will only play a prompt, and end the call if
an event with a status==CANCEL is received:

quizconnect callee.dsm:

import(mod dlg);

initial state START;

transition "got INVITE in callee leg" START - invite -> RUN INVITE;

transition "session starts in callee leg" START - sessionStart / {
sets($prompt_name=$(config.prompt path)/welcome callee.wav)
playFlle($prompt name) ;

} -> ENTER_PIN;

state RUN_INVITE
enter {

4 of 8 08/24/2010 02:09 AM

Re: SEMS DTMF

50of 8

LogAlL(3);

state ENTER PIN;
transition "got cancel from A leg" ENTER PIN - event(#a_ status==CANCEL) / stop(true) -> END;
state END;

Time to try that out! I am actually replacing the hard-coded outbound domain with a config variable:

quizconnect caller.dsm:

set(b leg callee=$callee);
set(b leg domain=$config.outbound domain);
set(b leg app=quizconnect callee);

so that I can set the outbound domain in quizconnect.conf:

db _url=mysql://user:pwd@127.0.0.1/quizconnect
outbound domain=192.168.5.106:5080

and for testing, for the moment I'll start a sipp uas responder:
$ sipp -sn uas -i 192.168.5.106 -mi 192.168.5.106 -p 5080

If I cancel the test call, I can see the two calls in sipp, which were in after ACK, receive BYEs. Nice!

So, now it would be nice to check what's actually going on with the calls, in which state they are etc, without always ahving
to scroll through countless log lines. Fortunately, the 'monitoring' module helps, because if it is loaded, the core saves
information about all running calls to the monitoring in-memory database, and if we enable two features in

dsm.conf:

monitoring full stategraph=yes
monitoring full transitions=yes

DSM also saves the states that were visited and the transitions to monitoring. Lets check it out from the python console over
xmlrpc (that's why we have set direct_export=dsm;monitoring in xmlrpc2di.conf):

>>> s, list()

['24ECAEFD-4C72F33D000438F1-B6843B70', 'OFA6BCB2-4C72F33D0004E577-B6843B70', '59FA4B10-4C72F33D0003C671-B6944B70']

>>> s.get(s list()[0])

[{'from' <51o:cu1zconnect 192 168 5 106 5080> , 'ruri 'sip:john@192.168.5.106:5080', 'app': 'quizconnect callee', "to':
'<sip:]ohn@ 02. ENTER PIN' dsm sfa%egrapﬁ 0, qu1zconnect callee/START' '> got INVITE in
callee Teg >7 qu1zconnect callee/RUN INVITE' qu1zconnect caTlee/START' '> session starts in callee leg >'

'quizconnect callee/ENTER PIN'], 'dsm diag': qu1zconnect callee', 'dir': 'out'}]
>>> 5, get(s Tist()[1])
[{'from': '<sip: qu1zconnect@192.168.5.106:5080> 'ruri' 51p anna@192.168.5.106:5080', 'app': 'quizconnect callee', 'to':

‘<sig:anna@192 168.5.106:5080>", "dsm state’ 'ENTER PIN' Tdsm_stategraph': [0, 'quizconnect callee/START', '> got INVITE in
callee Teg > quizconnec callee/RUN_INVITE' qulzconnect caTlee/START' '> session starts in callee leg >',

'quizconnect callee/ENTER PIN'], 'dsm diag': qu1zconnect callee', 'dir': 'out'}]
>>> 5, get(s Tist()[2])
[{'from': '"bee" <sip: 5@192.168.5.106>', 'ruri': 'sip:35@192.168.5.106', 'app': 'quizconnect caller', 'to

'<sip: 35@192 168 5.106>", "dsm state': 'WAIT CALLEE', Tdsm_stategraph': [0, 'quizconnect caller/START', '> got INVITE in
caller leg >T qu1zc0nnect caller/RUN INVITE', '> we have results >', qu1zconnect caller/CREATE CALLEE LEGS', '> create one
more >' qu1zconnect caller/CREATE CALLEE LEGS' '> create one more >', 'quizconnect caller/CREATE CALLEE LEGS‘ '> done
creatlng callee legs >' qu1zconnect caller/WAIT CALLEE", qu1zconnect caller/START' '> got INVITE in caller leg >!

qu1zconnect7ca11er/WAIT7CALLEE], 'dsm diag': qu1zconnect caller', 'dir': 'in'}]
>>>

so we see two calls running the quizconnect callee diagram in ENTER PIN state, and one running the quizconnect caller in
WAIT CALLEE.

two simple scripts are also useful:
$./sems-sessions-states.py

calls: 3

call id state

6ABC60BB-4C72F4BFOOO5C7FD-B6A45B70 WAIT CALLEE

19D97994-4C72F4BFO006A862-B65D5B70 ENTER PIN

3EC2A856-4C72F4BF00062B82-B65D5B70 ENTER PIN

$./sems-get-session.py 6ABC60BB-4C72F4BFO0O5C7FD-B6A45B70

calls: 3

attrib val

from "bee" <sip:5@192.168.5.106>

ruri sip:35@192.168.5.7106

app quizconnect caller

to <sip:35@192.168.5.106>

dsm state WATIT CALLEE

dsm_stategraph [0, Tquizconnect caller/START', '> got INVITE in caller leg >', 'quizconnect_caller/RUN_INVITE', '> we
have results >', qu1zconnect caller/CREATE CALLEE LEGS', '> create one more >' qu1zconnect caller/CREATE_CALLEE | LEGS' '>
create one more >', ‘'quizconnect caller/CREATE CALLEE LEGS' > done creating callee legs >'

‘quizconnect caller/WAIT CALLEE', 'quizconnect caller/START' '> got INVITE in caller leg >'
'quizconnect caller/WAIT CALLEE']

dsm diag quizconnect caller

dir in

$ cat sems-sessions-states.py
#!/usr/bin/%ython
from xmlrpclib import *

= ServerProxy("http://127.0.0.1:8090")
print "calls: %d™ % s.calls()

calls states = s.getAttributeActive("dsm state")
print "call id state"
for state in calls states:

print state[0] + " " + state[1]

08/24/2010 02:09 AM

Re: SEMS DTMF

$ cat sems-get-session.py
#!/usr/bin/python

import sys

from xmlrpclib import *

if len(sys.argv) != 2:
print "usage: %s <call id>" % sys.argv[0]
sys.exit 1?

= ServerProxy("http://127.0.0.1:8090")
print "calls: %d™ % s.calls()
calls states = s. get(sys argv[1l])
if len(calls_states)==
print "call not "found"
sys.exit(1l)
print "attrib val"
for state in calls states[0].items():
print str(state[0]).ljust(20) + str(state[l1])

so, what is next? entering the PIN number, of course. that should be simple:

quizconnect callee.dsm:

state ENTER PIN;
transition "got cancel from A leg" ENTER PIN - event(#a_ status==CANCEL) / stop(true) -> END;

transition "pressed a number" ENTER PIN - key(#key<10) / append($entered pin, #key) -> TEST PIN;
transition "pressed hash or start" ENTER PIN - key -> TEST PIN FINAL;

state TEST_PIN

enter {
repost();

trénsition "pin matches" TEST PIN - test($pin==$entered pin) -> MATCHING PIN;
transition "pin doesn't match™ TEST PIN - test($pin!=$entered pin) -> ENTER PIN;

state TEST_PIN_FINAL
enter {
repost();

tran51t10n "p1n matches" TEST PIN FINAL - test($pin==$entered pin) -> MATCHING PIN;
transition "pin doesn't match™ TEST PIN FINAL - test($pin!=$entered pin) /
clear($entered pin);
sets($prompt _name=$(config.prompt path)/sorry pin wrong.wav)
playFlle($prompt name) ;
} -> ENTER_PIN;

state MATCHING_PIN;

That works, but we want to break the prompt when the user enters a key, so we add closePlaylist(false), which stops playback
of currently playing items in the playlist, but doesn't generate an event:

transition "pressed a number" ENTER PIN - key(#key<10) / {
closePlaylist(false);
append($entered pin, #key);
} -> TEST PIN;
transition "pressed hash or start" ENTER PIN - key / closePlaylist(false) -> TEST PIN FINAL;

Now I realize we need to pass the id of the caller leg to the callee leg as well, so we can post back events:

quizconnect_caller.dsm:

-- pass $pin to other leg
set(b_leg var.pin=$pin);

-- our ltag
set(b leg var.a ltag=@local tag);

dlg.dialout(b_leg);

in the MATCHING PIN state, we let the A leg know that the callee found the solution, and we connect to the conference room
named with the Ttag of the caller leg:

quizconnect callee.dsm:

state MATCHING PIN

enter {
set($b status=MATCHED);
postEvent($a lta b status),
conference.join(%a _1tag);
repost();

trénsition "ok, connected" MATCHING PIN --> CONNECTED;
state CONNECTED;

n the caller leg, we have to do three things if one of the callees knows the right pin:
cancel all the other calls

reply to caller with 200 0K

join the conference room named with the @local tag

WN - -

6 of 8 08/24/2010 02:09 AM

Re: SEMS DTMF

7 of 8

quizconnect_caller.dsm:

transition "callee got it" WAIT CALLEE - test(#b status==MATCHED) / set($callee counter=0) -> CANCEL OTHER CALLEES;

state CANCEL OTHER CALLEES
enter {
repost();

’

transition "one more to cancel" CANCEL_OTHER CALLEES - test($callee_counter<$db.rows) / {
sets($var _name=b ltags[$(callee counter)]);
var(cancel ltag=$var name);
set(a_status=CANCEL);
postEvent($cancel ltag, a status);
inc(callee counter);
} -> CANCEL_OTHER CALLEES;

transition "canceled all" CANCEL_OTHER CALLEES - test($callee counter==$db.rows) / {
closePlaylist(false);
dlg.acceptInvite (200, OK);
conference.join(@local tag);

} -> CONNECTED;

state CONNECTED;

what's left now is two things only: handling BYE in CONNECTED state for both sides, and handling CANCEL when the callee leg
rings. For the first one, we need the ltag of the right callee leg, so we'll do this:

quizconnect callee.dsm:

state MATCHING_PIN

enter {
set($b status=MATCHED) ;
set($b ltag=@local tag);
postEvent(ga_ltag, b_status;b_ltag);

and save it:

quizconnect caller.dsm:

transition "callee got it" WAIT CALLEE - test(#b status==MATCHED) / {
set($b ltag=#b ltag),;
set($callee counter=0);

} -> CANCEL_OTHER CALLEES;

S0 we can use it:
quizconnect caller.dsm:

state CONNECTED;

transition "BYE received" CONNECTED - hangup / {
set($a_status=BYE);
postEvent($b ltag, a status);
stop(false);

} -> END;

transition "BYE in other leg" CONNECTED - event(#b status==BYE) / {
stop(true);
} -> END;

and vice versa:

quizconnect callee.dsm:

state CONNECTED;

transition "BYE received" CONNECTED - hangup / {
set($b_status=BYE);
postEvent($a_ltag, b _status);
stop(false);

} -> END;

transition "BYE in other leg" CONNECTED - event(#a status==BYE) / {
stop(true);
} -> END;

For the second issue, we will simply add the START and RUN_INVITE states to the "got cancel from A leg" transition:

quizconnect callee.dsm:

transition "got cancel from A leg" (START, RUN_INVITE, ENTER PIN) - event(#a status==CANCEL) / stop(true) -> END;

Attached you find the two scripts, which will (with this mail) be added soon to git in doc/dsm/tutorials.

Stefan

?ttggheg is the full script that we have so far. I hope you have some fun trying it out, and I would be happy about some
eedback.

Best Regards
Stefan

08/24/2010 02:09 AM

Re: SEMS DTMF

8 of 8

Stefan Sayer
VoIP Services Consulting and Development

Warschauer Str. 24
10243 Berlin

tel:+491621366449
sip:sayer@iptel.org)
email/xmpp:stefan.sayer@gmail.com

quizconnect_callee.dsm

Content-Type:

text/plain

Content-Encoding: base64

quizconnect_caller.dsm

Content-Type:

text/plain

Content-Encoding: 7bit

08/24/2010 02:09 AM

